STRONG GRAVITATIONAL LENSING SUPER-RESOLUTION

KOO HO YIN JACK
CSE & PHYSIC

SYED MOMIN AHMED RIZVI

CSE & MATH

WHY IS GRAVITATIONAL LENSING INTERESTING?

- Gravitational lensing occurs when a massive celestial body is heavy enough to bend the path of light.
- However, for some observed lenses, the normal matter there does not have enough gravity to bend spacetime.
- This suggests the existence of a new matter,
 dark matter

THE SHAPE OF GL DETERMINES THE TYPE OF DARK MATTER

AXION DARK MATTER

COLD DARK MATTER

NO-SUBSTRUCTURE DARK MATTER

THERE IS JUST A SMALL PROBLEM, THE LENS IS TOO BLURRY TO SEE THE SHAPE

THIS IS WHERE DEEP LEARNING IS USEFUL

bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original

SUPER-RESOLUTION!!

RELATED WORK

1. CLASSIFICATION OF SIMULATED GLS WITH DIFFERENT TYPE OF DARK MATTER:

Deep Learning the Morphology of Dark Matter Substructure

Stephon Alexander,^{1, 2} Sergei Gleyzer,³ Evan McDonough,^{1, 2} Michael W. Toomey,^{2,*} and Emanuele Usai²

¹Brown Theoretical Physics Center, Brown University, Providence, RI, USA

²Department of Physics, Brown University, Providence, RI, USA

³Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA

FIG. 6. ROC curve for multiclass substructure classification with *ResNet*, as discussed in Section VIA.

RELATED WORK

2. NEURAL NETWORK BASED SUPER-RESOLUTION

This work was done as part of Google Summer of Code (GSoC) 2023

PYTHON

LICENSE

() PYTORCH

Model	MSE	PSNR	SSIM
RCAN	0.00089	30.50028	0.56995
Residual Dense Network (RDN)	0.0009	30.49815	0.57196
SRResNet (18 Blocks)	0.0009	30.49482	0.57325
EDSR	0.0009	30.49347	0.57424
FSRCNN	0.0009	30.45184	0.56641
Hybrid FSRCNN (Feature Extraction Layers - Equivariant, Upscaling Layer - Convolutional)	0.00091	30.42472	0.57249
Bilinear Interpolation (Baseline)	0.00333	24.7818	0.30323
Equivariant FSRCNN	0.08281	19.35347	0.54386

RELATED WORK

3. PHYSICS-INFORMED NEURAL NETWORK BASED SUPER-RESOLUTION

Physics-Informed Unsupervised Super-Resolution of Lensing Images: GSoC 2024 x ML4Sci

SERSIC PROFILE

$$I(R) = I_0 \exp\Bigl(-kR^{1/n}\Bigr)$$

LIMITATION OF EXISTING METHOD: THEY ONLY USE SIMULATION DATA

REALITY IS ALWAYS MORE DIFFICULT

QUESTION: CAN WE USE OBSERVED DATA FOR TRAINING?

HERE COMES ANOTHER PROBLEM, OBSERVED DATA ARE TOO SMALL

10000 SIMULATED HR-LR PAIR

300 OBSERVED HR-LR PAIR

OUR SOLUTION: TRANSFER LEARNING

DATA

Summer of Code

MACSISTANCE IN CONTRACTOR OF THE PROPERTY OF T

Machine Learning for Science

EVALUATION METRIC

- 1. MSE: measure average pixel-wise difference
- 2. SSIM: measure local variations and textures
- 3. PSNR: Peak Signal-to-Noise Ratio

MODEL USED

1. RESIDUAL CHANNEL ATTENTION NETWORK (RCAN):

MODEL USED

2. SUPER-RESOLUTION RESIDUAL NETWORK (SRRESNET):

MODEL USED

2. SUPER-RESOLUTION RESIDUAL NETWORK (SRRESNET):

Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer.

SIMULATED DATA RESULT

	Bilinear (baseline)	RCAN	SRResnet	SRGAN
MSE	0.00006921	0.00006035	0.00005981	0.002784
SSIM	0.9756	0.9772	0.9765	0.5664
PSNR	41.64	42.23	42.27	26.52

PAGE 19

SIMULATED DATA RESULT

TRANSFER LEARNING

• After obtaing our base model, we can apply our model on real data

LAYER FREEZING

Feature extraction Upsampling layer layer deconv conv Train Freeze

FINE-TUNING

SMALL LEARNING RATE

FINE-TUNING

Unfreeze all layers and use a smaller learning rate to train

OBSERVED DATA RESULT

	Bilinear (baseline)	RCAN	SRResnet	Unpretrained RCAN
MSE	0.01010	0.004488	0.004609	0.008310
SSIM	0.4467	0.7756	0.7388	0.3280
PSNR	24.05	32.57	29.99	24.58

OBSERVED DATA RESULT

FUTURE WORK

- Simulate different types of gravitational lensing.
- Check if super-resolution images increase accuracy

REFERENCE

- 1. STEPHON ALEXANDER ET AL. DECODING DARK MATTER SUBSTRUCTURE WITHOUT SUPERVISION. ARXIV PREPRINT, ARXIV:2008.12731, 2020.
- 2. ATAL GUPTA. SINGLE IMAGE SUPER-RESOLUTION WITH DIFFUSION MODELS.
- 3. NASA. FOCUSING IN ON GRAVITATIONAL LENSES, 2023.
- 4. MICHELLE NTAMPAKA ET AL. DEEP LEARNING THE MORPHOLOGY OF DARK MATTER SUBSTRUCTURE. ARXIV PREPRINT, ARXIV:1909.07346, 2019.
- 5. J. PRESKILL, M. B. WISE, AND F. WILCZEK. COSMOLOGY OF THE INVISIBLE AXION. PHYSICS LETTERS B, 120(1-3):127–132, 1983.
- 6. PRANATH REDDY. SUPER-RESOLUTION FOR STRONG GRAVITATIONAL LENSING.
- 7. ANIRUDH SHANKAR. PHYSICS-INFORMED UNSUPERVISED SUPER-RESOLUTION OF LENSING IMAGES: GSOC 2024 X ML4SCI. MEDIUM, 2024.
- 8.G. STEIGMAN AND M. S. TURNER. COSMOLOGICAL CONSTRAINTS ON THE PROPERTIES OF WEAKLY INTERACTING MASSIVE PARTICLES. NUCLEAR PHYSICS B, 253:375–386, 1985.
- 9. YULUN ZHANG, KUNPENG LI, KAI LI, LICHEN WANG, BINENG ZHONG, AND YUN FU. IMAGE SUPER-RESOLUTION USING VERY DEEP RESIDUAL CHANNEL ATTENTION NETWORKS. ARXIV PREPRINT, ARXIV:1807.02758, 2018. PUBLISHED IN ECCV 2018.

